Chapter 19 Electrochemistry Math Summary

Relating Standard Cell Potential to Standard Half Cell Potentials E° _{cell}= E° _{oxidation} + E° _{reduction} (standard conditions assume 1.0 M concentrations)

Relating Half Cell Potentials when Written in Opposite Directions $E^{\circ}_{\text{ox}} = -E^{\circ}_{\text{red}}$ for half reactions written in opposite directions

Relating Standard Cell Potentials to ∆G ΔG° = -nFE $^{\circ}$ _{cell} (to give answer in kJ, use F = 96.485) $F = 96,500$ C/mol n=number of electrons transferred

Relating Actual Cell Potential to Standard Cell Potential when Concentrations aren't 1.0-M $E_{cell} = E^{\circ}_{cell} - [0.0592/n] \log Q$ (Q = ratio of actual concentrations)

Relating Standard Cell Potential to Equilibrium Constant $log K = nE^{o}/0.0592$

Relating Actual Cell Potential to Actual Concentrations in Concentration Cells $E_{cell} = -[0.0592/n] \log Q$ for concentration cells, where anode and cathode differ only in concentration, but otherwise have same ions

Relating # of Moles of Electrons Transferred as a Function of Time and Current in Electrolysis 1 mol e⁻ = $96,500$ C moles of electrons = $[current (A)*time (sec)]/96,500$ for electrolysis, moles, current, and time are related. rearranged: time (sec)=(moles of electrons)(96500)/current (in A) Note: 3600 sec/hour so time (hours)=(moles of electrons)(26.8)/current (in A)

Electrochemistry-Related Units C = Coulomb = quantity of electrical charge = $6.24 \cdot 10^{18}$ electrons • 1 mole of electrons = $96,500 \text{ C}$ $A = amp = rate of charge flow per time = C/sec$ $V = volt = electrical power/force/strength = J/C$ $F = Faraday = \frac{96,500C}{1.7}$ mole e[−] 96.5 kJ mole e[−] •V